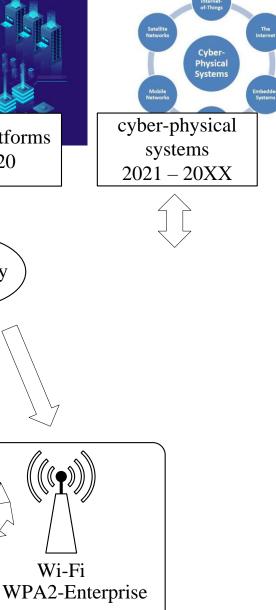

Cyber security in innovative technologies

The scheme of interconnection of the structure with CCIS, on the example of organizations in the transport sector

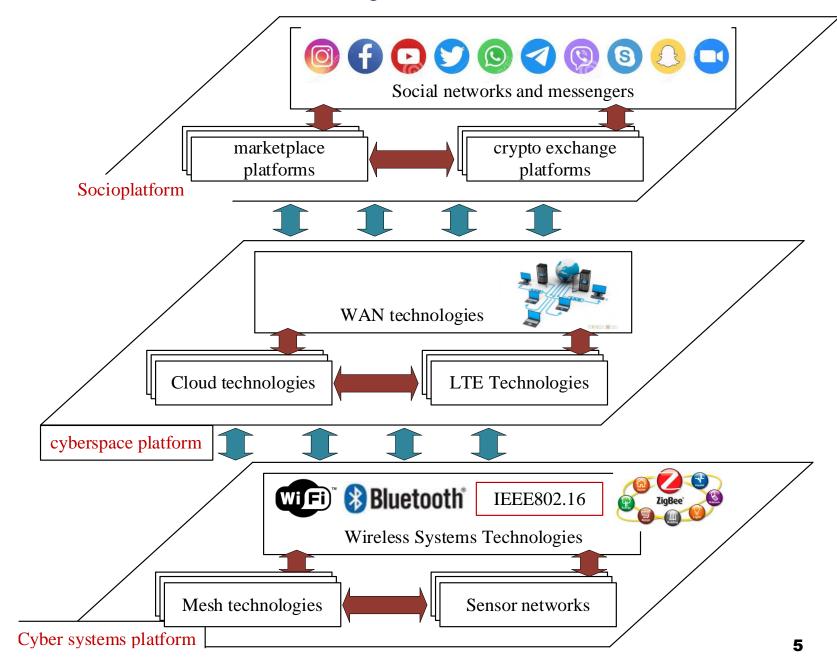
INTERNET

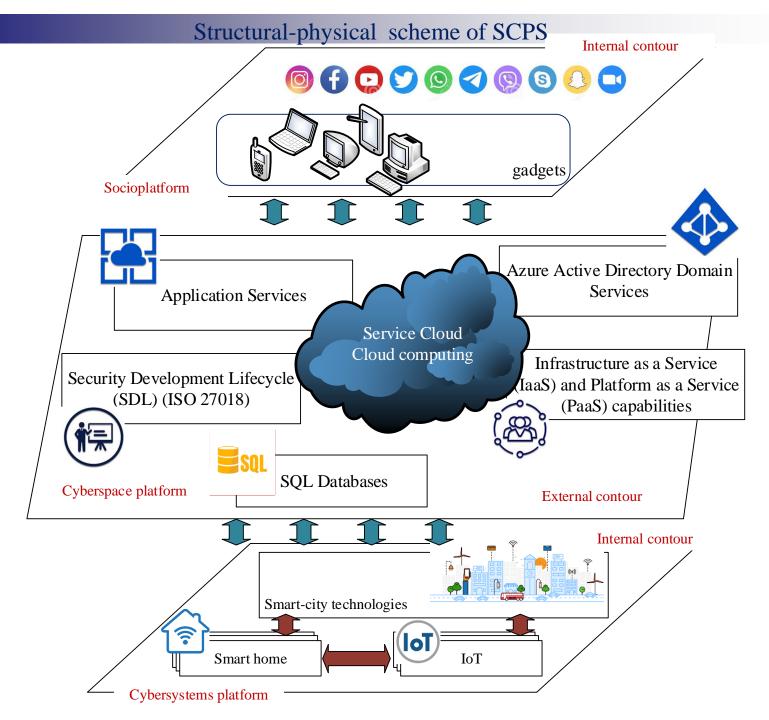
IPSec, SMIME,

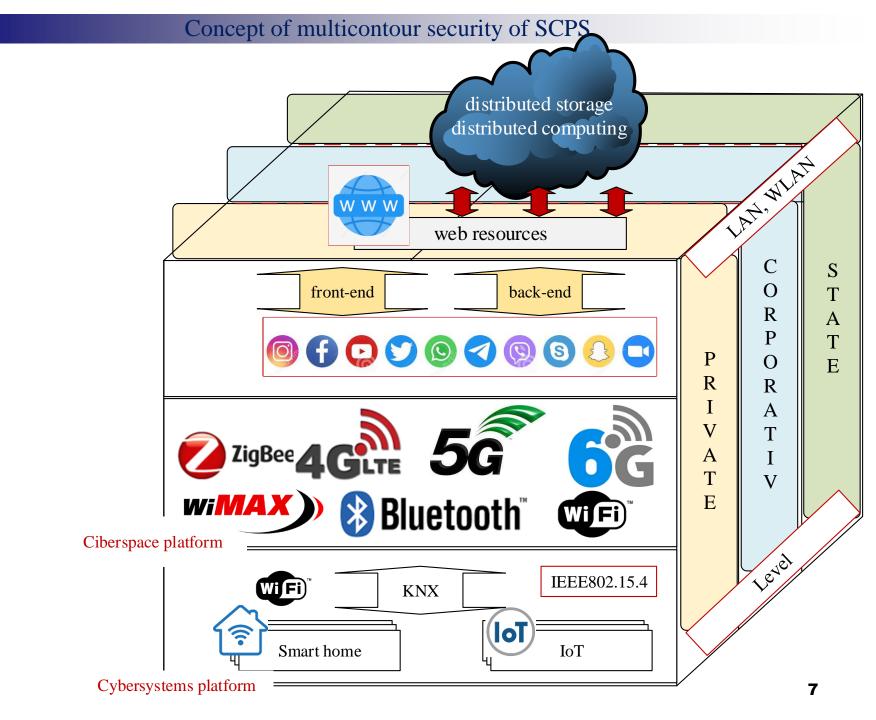
PGP,PKI

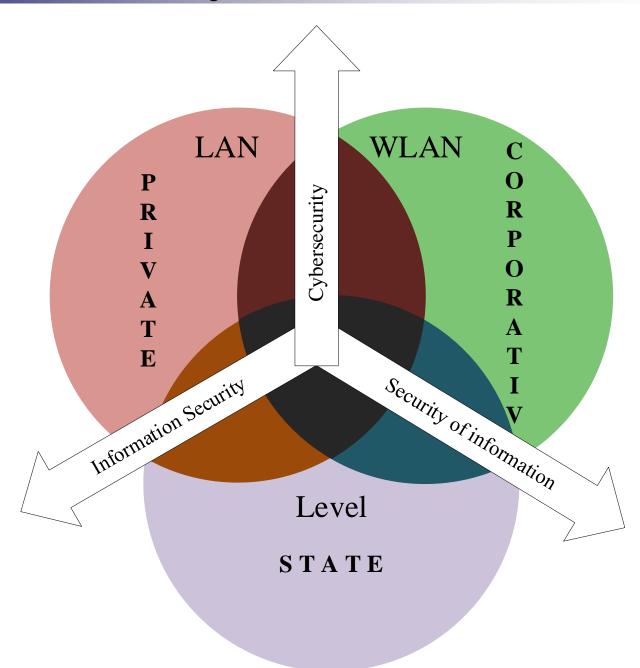

Wi-Fi

(802.1x)


1 BOOK


LTE


(Diameter protocol)


Structural-logical scheme of SCPS

Structural and logical scheme of threats to SCPS

Formal description of the Concept

- threats of the internal contour, taking into account the hybridity and synergy of threats for the 1st platform – social networks:

$$W_{\text{hybrid }C,I,A,Au,Af \ synerg_{1} \text{platform}}^{SS \ ISL} = W_{synerg_{1} \text{platform}}^{SS \ ISL} \cap W_{synerg_{1} \text{platform}}^{II}$$

- threats of the internal contour, taking into account the hybridity and synergy of threats for the 2nd platform – cyberspace:

$$\begin{split} W_{\text{hybrid }C,I,A,Au,Af \ synerg_{2\text{platform}}}^{CS \ ISL} &= W_{synerg_{2\text{platform}}}^{CS \ ISL} \cap W_{synerg_{2\text{platform}}}^{C$$

- threats of the internal contour, taking into account the hybridity and synergy of threats for the 3rd platform – cyber-physical systems:

$$W_{\text{hybrid }C,I,A,Au,Af \ synerg_{3platform}}^{CPS \ ISL} = W_{synerg_{3platform}}^{CPS \ ISL} \cap W_{synerg_{3platform}}$$

Formal description of the Concept

General assessment of threats of the internal contour, taking into account the technologies of the socio-cyber-physical system

$$W_{\mathit{ISL}}^{\mathit{CPSS}} = W_{\mathsf{hybrid}}^{\mathit{SS}} \, {}^{\mathit{ISL}} \\ \mathsf{hybrid}} \, C_{,I,A,\mathit{Au},\mathit{Af}} \, {}^{\mathit{synerg}} \, \mathsf{1platform} \, \\ \bigcup W_{\mathsf{hybrid}}^{\mathit{CS}} \, {}^{\mathit{ISL}} \\ \mathsf{hybrid}} \, C_{,I,A,\mathit{Au},\mathit{Af}} \, {}^{\mathit{synerg}} \, \mathsf{2platform} \, \\ \bigcup W_{\mathsf{hybrid}}^{\mathit{CPS}} \, {}^{\mathit{ISL}} \\ \mathsf{hybrid}} \, C_{,I,A,\mathit{Au},\mathit{Af}} \, {}^{\mathit{synerg}} \, \mathsf{3platform} \, \\ \bigcup W_{\mathsf{hybrid}}^{\mathit{CPS}} \, {}^{\mathit{ISL}} \\ \mathsf{hybrid}} \, C_{,I,A,\mathit{Au},\mathit{Af}} \, {}^{\mathit{synerg}} \, \mathsf{3platform} \, \\ \bigcup W_{\mathsf{hybrid}}^{\mathit{CPS}} \, {}^{\mathit{ISL}} \\ \mathsf{hybrid}} \, C_{,I,A,\mathit{Au},\mathit{Af}} \, {}^{\mathit{synerg}} \, \mathsf{3platform} \, \\ \bigcup W_{\mathsf{hybrid}}^{\mathit{CPS}} \, {}^{\mathit{ISL}} \\ \mathsf{hybrid}} \, C_{,I,A,\mathit{Au},\mathit{Af}} \, {}^{\mathit{synerg}} \, \mathsf{3platform} \, \\ \bigcup W_{\mathsf{hybrid}}^{\mathit{CPS}} \, {}^{\mathit{ISL}} \, \mathcal{O}_{\mathsf{Nu}} \, \mathcal{O}_{\mathsf{Nu}}$$

General assessment of threats of the internal contour, taking into account the form of ownership of the elements and technologies of the socio-cyber-physical system

$$W_{ISL_{ ext{general}}}^{CPSS} = W_{ISL_{ ext{private.}}}^{CPSS} \bigcup W_{ISL_{ ext{state}}}^{CPSS} \bigcup W_{ISL_{ ext{corporativ}}}^{CPSS},$$

General assessment of threats of the internal contour, taking into account the technologies of the socio-cyber-physical system

$$W_{ESL}^{CPSS} = W_{\text{hybrid }C,I,A,Au,Af synerg}^{SS ESL} \bigcup_{\text{hybrid }C,I,A,Au,Af synerg}^{CPS ESL} \bigcup_{\text{hybrid }C,I,A,Au,Af synerg}^{CPS ESL} \bigcup_{\text{hybrid }C,I,A,Au,Af synerg}^{CPS ESL}$$

General assessment of threats of the internal contour, taking into account the form of ownership of the elements and technologies of the socio-cyber-physical system

$$W_{ESL_{ ext{general}}}^{CPSS} = W_{ESL_{ ext{private.}}}^{CPSS} \bigcup W_{ESL_{ ext{state}}}^{CPSS} \bigcup W_{ESL_{ ext{corporativ}}}^{CPSS}$$
 ,

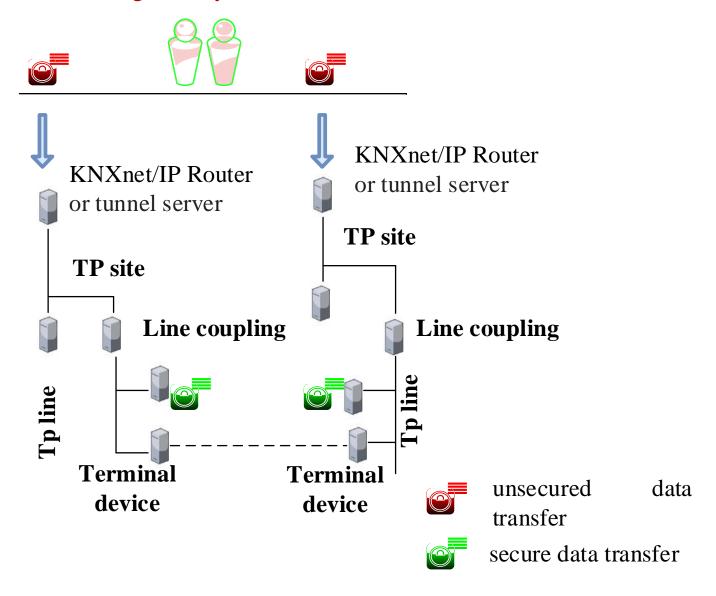
Formal description of the Concept

generalized assessment of a multicontour security system, we use the formula

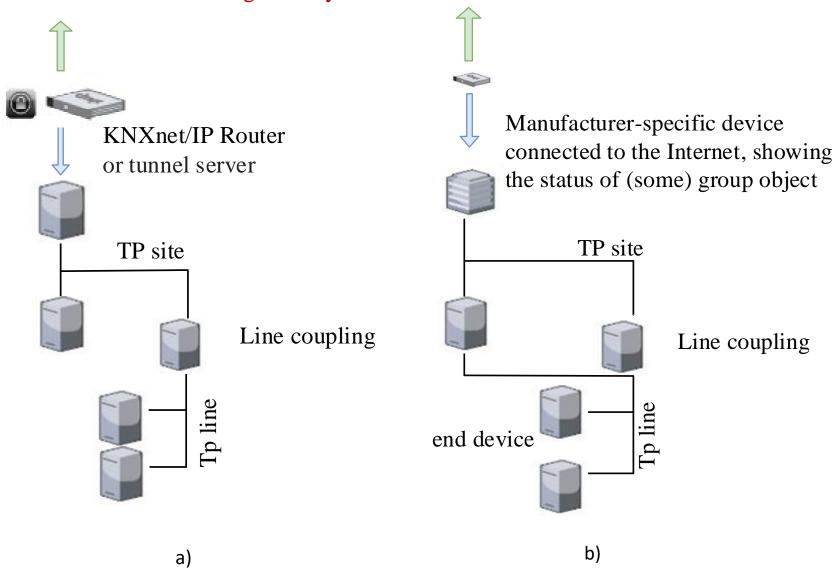
$$W_{ ext{final}}^{ extit{CPSS}} = W_{ extit{ISL}_{ ext{general}}}^{ extit{CPSS}} igcup W_{ extit{ESL}_{ ext{general}}}^{ extit{CPSS}}.$$

general (current) level of socio-cyber-physical systems security based on wireless mobile technologies is described by the expression:

- for additive convolution


$$L_{W_{\text{security}}}^{CPSS} = L_{ISL} \sum_{j=1}^{3} \sum_{i=1}^{12} \left(I_{A_{ij}} \times \beta_{ij} \right) + L_{ESL} \sum_{j=1}^{3} \sum_{i=1}^{12} \left(I_{A_{ij}} \times \beta_{ij} \right).$$

for multiplicative convolution


$$L_{W_{\text{security}}^{CPSS}} = 1 - \left[1 - L_{ISL} \sum_{j=1}^{3} \sum_{i=1}^{12} \left(I_{A_{ij}} \times \beta_{ij}\right)\right] \times \left[1 - L_{ESL} \sum_{j=1}^{3} \sum_{i=1}^{12} \left(I_{A_{ij}} \times \beta_{ij}\right)\right].$$

 β_i – a metric of the ratio of time and information confidentiality degree for an asset (critical – 1,0; high – 0,75; medium – 0,5; low – 0,25; very low – 0,01)

Ensuring security in mobile wireless channels based on KNX

Ensuring security in mobile wireless channels based on KNX

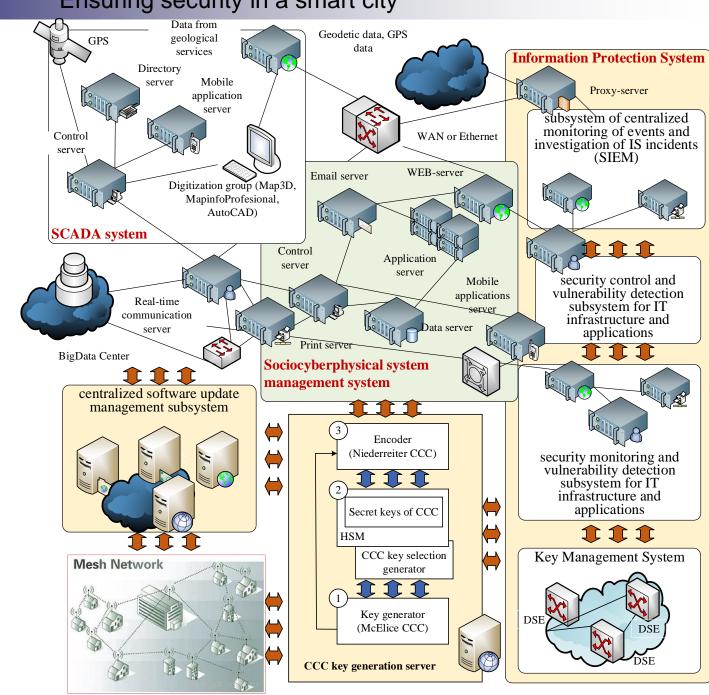
KNX Data Secure: a – KNX IP Secure; b – KNX Data Secure

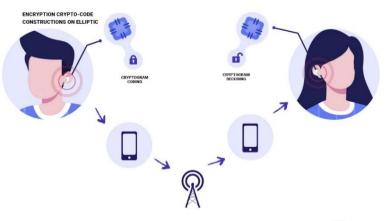
the possibilities of quantum computing

Comparative analysis of factorization complexity for classical and quantum algorithms

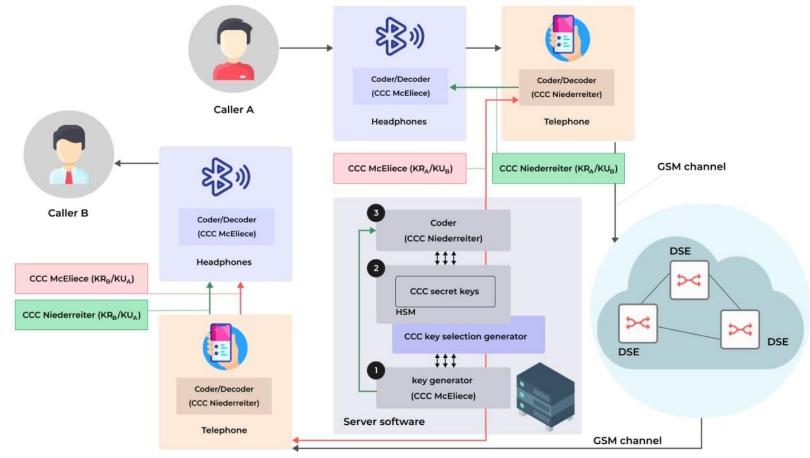
Module	The num-	The com-	The com-				
size N,	ber of re-	plexity of	plexity of				
bit	quired	the quantum	the classical				
	qubits 2n	algorithm	algorithm				
		$4n^3$					
512	1024	$0.54 \cdot 10^9$	$1.6 \cdot 10^{19}$				
3072	6144	12·10 ¹⁰	5·10 ⁴¹				
15360	30720	$1.5 \cdot 10^{13}$	9.2·1080				

The complexity of implementing the Shore method of discrete logarithm of a group of EC points

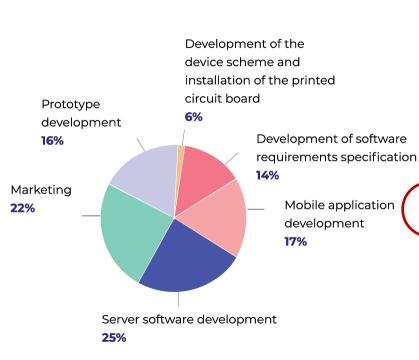

Algorithm for calculating the discrete logarithmic						
equation						
The size of the order of the base point, bits		Complexity of the quantum algorithm $360n^3$	Complexi- ty of the classical algorithm			
163	1210	1.6×10 ⁹	3.4×10^{24}			
256	1834	6×10 ⁹	3.4×10^{38}			
571	4016	6.7×10^{10}	8.8×10 ⁸⁵			
1024	7218	3.8 ×10 ¹¹	1.3×10 ¹⁵⁴			


Post-quantum security algorithms SI Α В threats Secret key $a_1, ..., a_n$ Internal safety loop Session key $|IV_1|, e$ Formation of key data Private key G, X, P, D Public key 补 X-1, P-1, D-1 Targeted $G_x = X \times G \times P \times D$ IS threats Cyber 夏夏 Threats $c' = c_X^* \times D^{-1} + P^{-1}$ $c_X^* = i \times G_X + e$ c_{X} $c' = i' \times G + e'$ $i = i \times X^{-1}$ Protocol Encryption Decryption McEliece crypto-code construction on the EC Α В Secret key $a_1, ..., a_n$ Session key |V₁| Private key H, X, P, D Formation of Special LTE Cyber key data (EC) GPRS/ services Public key threats X-1, P-1, D-1 EDGE access $H_x = X \times G \times P \times D$ $S_X = c_X^* \times H_X^T$ $c` = c_X^* \times D^{-1} \times P^{-1}$ $S_X = e \times H_X^T$ Streaming Control system $c' = i' \times G + e'$ server Protocol - Policy server $e = e^{\cdot} \times P \times D$ Server for Real-Time Splitting of noncommunication binary equilibrium External safety loop vector on positional Convert error vector and binomial vectors to plaintext $|A = A_B \times (q-1)^w + A_P|$ Decryption Encryption

Niederreiter crypto-code construction on EC

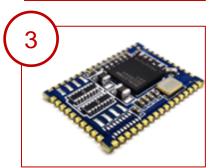

Comparative characteristics of wireless and mobile Internet technologies

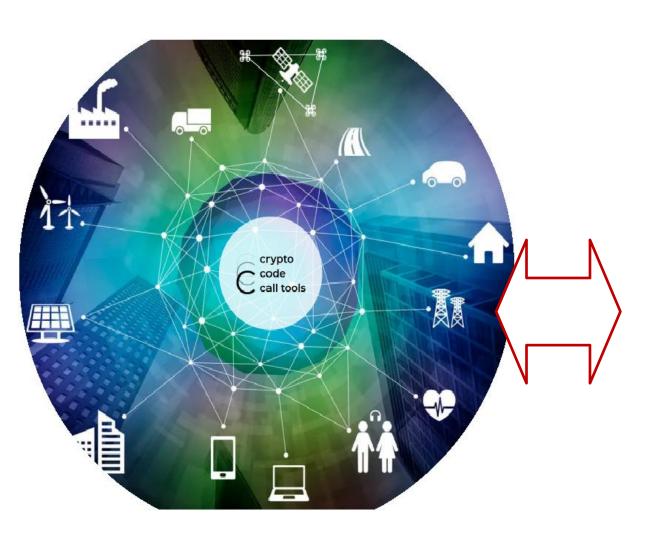
Technology		Provision of security services				The degree of information secrecy (β_i)				
		I	A	A_{u}	В	1,0	0,75	0,5	0,25	0,01
LTE (4G), LTE (5G)	_	_	+	-/+	-/+		_		_	_
IEEE 802.11 ac (Wi-Fi 5)	_	_	+	-/+	-/ +	1	_	1	_	_
IEEE 802.11ax, Wi-Fi 6+KNX	-/+	_/+	+	-/+	-/+	1	_	-	+	+
IEEE 802.16+KNX	_/+	_/+	+	_/+	-/ +	1	_	1	+	+
IEEE 802.16m (WiMAX2)	-/+	_/+	+	-/+	-/+	1	_	1	+	+
IEEE 802.15.1 Bluetooth 5+KNX	-/+	_/+	+	-/+	-/ +	1	_	1	+	+
IEEE 802.15.4+KNX	-/+	_/+	+	-/+	-/+	1	_	-	+	+
Mobile technologies+ CCC EC(MEC)	+	+	+	+	+	+	+	+	+	+
Mobile technologies+ HCCC EC(MEC)		+	+	+	+	+	+	+	+	+
Mobile technologies+ ССС на LDPC		+	+	+	+		_	+	+	+

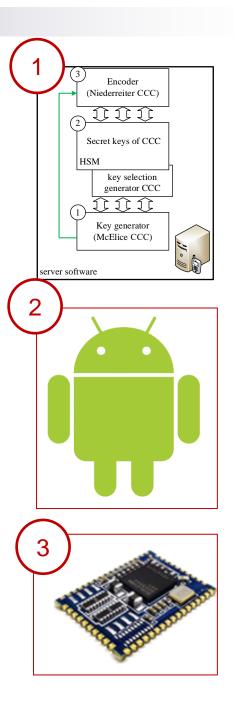


https://www.calltools.ua/

Creating an MVP


To create an MVP of the project and to promote it, we need to attract - **260000** \$




Encoder (Niederreiter CCC) $\widehat{\Omega}$ $\widehat{\Omega}$ Secret keys of CCC key selection generator CCC Key generator (McElice CCC) server software

https://www.calltools.ua/

National Technical University "Kharkiv polytechnic institute"

Thank you for attention!