

Syllabus Course Program

Cryptanalysis methods

Specialty 125 – Cybersecurity and information protection

Educational program Cybersecurity

Level of education Bachelor's level

Semester

6

Institute

Educational and Scientific Institute of Computer Science and Information Technology

Department Cybersecurity (328)

Course type Profile training, Selective

Language of instruction English

Lecturers and course developers

Serhii YEVSEIEV

serhii.yevseiev@khpi.edu.ua

Doctor of technical sciences, professor, head of the cyber security department of National Technical University "Kharkiv Polytechnic Institute".

The number of scientific publications: more than 350, including 42 utility model patents, 17 monographs, of which 9 are collective monographs, 31 textbooks, 4 of which bear the seal of the Ministry of Education and Science of Ukraine, 163 articles in foreign publications and specialized publications of Ukraine, with 61 of them are in the Scopus scientometric database. Leading lecturer in the disciplines: "Information security management", "Introduction to networks", "Security of banking systems", "Hybrid warfare and national security", "Audit and monitoring of corporate networks", "Blockchain: basics and application examples", "Fundamentals of smart contracts", "Basics of cyber security" for undergraduate and graduate students, Section "Methods and technologies of information security monitoring and auditing", "Methods of building post-quantum cryptosystems", "Latest technologies for ensuring cyber security based on blockchain technology" for postgraduate students.

More about the lecturer on the department's website

General information

Summary

The study discipline "Cryptanalysis methods" is a selective study discipline. The discipline is aimed at the formation of students based on a systematic approach to the scientific worldview, which allows them to freely navigate theoretical approaches to the implementation of modern principles of building modern cryptographic systems and the formation of knowledge on determining the stability of cryptographic systems to modern methods of cryptanalysis.

Course objectives and goals

Obtaining knowledge on the basic methods of cryptanalysis of cryptographic systems, which allow to determine their stability, as well as the formation of knowledge and skills in performing cryptographic

studies of ciphers and assessing the level of compliance of their properties with the given level of security, which they must provide as part of an information system.

Format of classes

Lectures, laboratory classes, consultations, self-study. Final control - credit test.

Competencies

GC-2. Knowledge and understanding of the domain and understanding of the profession.

GC-5. Ability to search, process and analyze information.

PC-2. Ability to use information and communication technologies, modern methods and models of information security and/or cyber security.

PC-5. The ability to ensure the protection of information processed in information and

telecommunication (automated) systems for the purpose of implementing the established information and/or cyber security policy.

PC-8. Ability to carry out incident management procedures, conduct investigations, provide them with an assessment.

PC-10. Ability to apply methods and means of cryptographic and technical protection of information at objects of information activity.

PC-12. Ability to analyze, identify and evaluate possible threats, vulnerabilities and destabilizing factors to the information space and information resources in accordance with the established policy of information and/or cyber security.

Learning outcomes

LO-1. Apply knowledge of state and foreign languages in order to ensure the effectiveness of professional communication;

LO-2. Organize own professional activity, choose optimal methods and ways of solving complex specialized tasks and practical problems in professional activity, evaluate their effectiveness;

LO-3. Use the results of independent search, analysis and synthesis of information from various sources for the effective solution of specialized tasks of professional activity.

LO-4. Analyze, argue, make decisions when solving complex specialized tasks and practical problems in professional activity, which are characterized by complexity and incomplete determination of conditions, be responsible for the decisions made.

LO-5. Adapt under the conditions of frequent changes in the technologies of professional activity, to predict the final result.

LO-6. Critically understand the main theories, principles, methods and concepts in education and professional activity.

LO-7. Act on the basis of the legislative and regulatory framework of Ukraine and the requirements of relevant standards, including international ones in the field of information and/or cyber security. LO-8. Prepare proposals for regulatory acts on ensuring information and/or cyber security.

LO-9. Implement processes based on national and international standards for detection, identification, analysis and response to information and/or cyber security incidents.

LO-10. Perform analysis and decomposition of information and telecommunication systems.

LO-11. Perform analysis of connections between information processes on remote computer systems.

LO-12. Develop threat and intruder models.

LO-13. Analyze projects of information and telecommunication systems based on standardized technologies and data transmission protocols.

LO-14. Solve the task of protecting programs and information processed in information and telecommunication systems by hardware and software tools and evaluate the effectiveness of the quality of the decisions made.

LO-15. Use modern hardware and software of information and communication technologies. LO-16. Implement complex information security systems in the automated systems (AS) of the

organization (enterprise) in accordance with the requirements of regulatory and legal documents.

LO-17. Ensure the processes of security and functioning of information and telecommunication (automated) systems based on practices, skills and knowledge, regarding structural (structural-logical) schemes, network topology, modern architectures and models of security of electronic information

resources with a reflection of relationships and information flows, processes for internal and remote components.

LO-18. Use software and software-hardware complexes for the security of information resources. LO-19. Apply theories and methods of protection to ensure information security in information and telecommunication systems.

LO-20. Ensure the functioning of special software to protect information from destructive software influences, destructive codes in information and telecommunication systems.

LO-21. Solve tasks of provision and support (including: review, testing, accountability) of the access control system according to the stated security policy in information and telecommunication (automated) systems.

LO-22. Solve the management procedures of identification, authentication, authorization of processes and users in information and telecommunication systems according to the established policy of information and/or cyber security.

LO-23. Implement measures to prevent unauthorized access to information resources and processes in information and telecommunication (automated) systems.

LO-24. Solve the problems of managing access to information resources and processes in information and telecommunication (automated) systems based on access management models (mandatory, discretionary, role-based).

LO-25. Ensure the introduction of accountability of the access management system to electronic information resources and processes in information and telecommunication (automated) systems using event registration logs, their analysis and stated protection procedures.

LO-26. Implement measures and ensure the implementation of processes of prevention of unauthorized access and protection of information, information and telecommunication (automated) systems based on the reference model of interaction of open systems.

LO-27. Solve problems of data flow protection in information and telecommunication (automated) systems.

LO-28. Analyze and evaluate the effectiveness and level of security of resources of various classes in information and telecommunication (automated) systems during tests in accordance with the established policy of information and/or cyber security.

LO-29. Evaluate the possibility of realization of potential threats of information processed in information and telecommunication systems and the effectiveness of the use of complexes of protection means under the conditions of realization of threats of various classes.

LO-30. Assess the possibility of unauthorized access to elements of information and telecommunication systems.

LO-31. Apply protection theories and methods to ensure the security of elements of information and telecommunication systems.

LO-32. Solve the tasks of managing the processes of restoring the regular functioning of information and telecommunication systems using backup procedures in accordance with the stated security policy. LO-33. Solve the problems of ensuring the continuity of business processes of the organization on the basis of risk management theory.

LO-34. Participate in the development and implementation of an information security and/or cyber security strategy in accordance with the goals and objectives of the organization.

LO-35. Solve the tasks of providing and supporting complex information security systems, as well as countering unauthorized access to information resources and processes in information and information-telecommunication (automated) systems in accordance with the stated policy of information and/or cyber security.

LO-36. Detect dangerous signals of technical means.

LO-37. Measure the parameters of dangerous and interfering signals during the instrumental control of information security processes and determine the effectiveness of information security against leakage through technical channels in accordance with the requirements of regulatory documents of the technical information security system.

LO-38. Interpret the results of special measurements using technical means, monitoring the characteristics of information and telecommunication systems in accordance with the requirements of regulatory documents of the technical information security system.

LO-39. Carry out attestation (based on accounting and survey) of regime territories (zones), premises, etc. under the conditions of compliance with the secrecy regime, recording the results in the relevant documents.

LO–40. Interpret the results of special measurements using technical means, control of ITS characteristics in accordance with the requirements of regulatory documents of the technical information security system.

LO-41. Ensure the continuity of the event and incident logging process based on automated procedures. LO-42. Implement processes of detection, identification, analysis and response to information and/or cyber security incidents.

LO-43. Apply national and international regulatory acts in the field of information security and/or cyber security to investigate incidents.

LO-44. Solve the problems of ensuring the continuity of the organization's business processes on the basis of risk management theory and the stated information security management system, in accordance with national and international requirements and standards.

LO-45. Apply early classes of information security and/or cyber security policies based on risk-based access control to information assets.

LO-46. Analyze and minimize the risks of information processing in information and telecommunication systems.

LO-47. Solve the problems of protection of information processed in information and telecommunication systems using modern methods and means of cryptographic protection of information.

LO-48. Implement and maintain intrusion detection systems and use cryptographic protection components to ensure the required level of information security in information and telecommunications systems.

LO-49. Ensure the proper functioning of the monitoring system of information resources and processes in information and telecommunication systems.

LO-50. Ensure the functioning of software and software-hardware complexes for detecting intrusions of various levels and classes (statistical, signature, statistical-signature).

LO-51. Maintain operational efficiency and ensure configuration of intrusion detection systems in information and telecommunication systems.

LO-52. Use tools for monitoring processes in information and telecommunication systems.

LO-53. Solve problems of software code analysis for the presence of possible threats.

LO-54. Be aware of the values of a civil (free democratic) society and the need for its sustainable development, the rule of law, the rights and freedoms of a person and a citizen in Ukraine.

Student workload

The total volume of the course is 120 hours (4 ECTS credits): lectures - 24 hours, laboratory classes - 12 hours, self-study - 84 hours.

Course prerequisites

Higher mathematics.

Features of the course, teaching and learning methods, and technologies

In the course of teaching the discipline, the teacher uses explanatory-illustrative (informationalreceptive) and reproductive teaching methods. Presentations, conversations, and master classes are used as teaching methods aimed at activating and stimulating the educational and cognitive activities of applicants.

Program of the course

Topics of the lectures

Topic 1. General information about methods of cryptanalysis of block ciphers.

A brief description of the current stage of cryptography development. Cryptanalysis and standardization of encryption algorithms.

Topic 2. Block ciphers.

Definition of a block cipher. Building blocks. Construction of block ciphers. Cracking the block cipher. Classification of attacks. Attacks on BSSH. Differential cryptanalysis. Linear cryptanalysis. Weak keys. Topic 3. Differential cryptanalysis of the DES cipher. Principles of differential cryptanalysis. Conceptual apparatus. Passing through DES cycles of differences (XOR) of texts. Computer viruses and problems of antivirus protection.

Topic 4. Linear cryptanalysis of the DES cipher.

The essence of the method of linear cryptanalysis. Construction of linear approximation tables. Linear approximation characteristics used in Matsui attacks.

Topic 5. Differential cryptanalysis of ciphers built on the basis of SPN structures.

Analysis of properties of nonlinear transformation. Construction of a differential characteristic. Extracting key bits. Complexity of the attack.

Topic 6. Linear cryptanalysis of ciphers built on the basis of SPN structures.

Analysis of properties of nonlinear transformation. Finding the key bits. Attack Difficulty.

Topic 7. Accelerated method of cryptanalysis based on the use of reduced cipher models.

The essence of the accelerated method of cryptanalysis. Results of computational experiments on determining complete differentials of reduced models of modern ciphers. Linear properties of reduced cipher models.

Topic 8. The method of assessing the stability of BSSH based on entropy assessment.

The essence of the entropy assessment of the stability of modern ciphers.

Topic 9. Characterization and analysis of the assessment methodology based on the NIST 822-STS package.

General principles of stability assessment based on the NIST 822-STS package. Assessment methods. Topic 10. Characterization and analysis of fourth generation mobile networks.

Characteristics and analysis of fourth generation mobile networks.

Topics of the workshops

Not provided for in the curriculum.

Topics of the laboratory classes

Topic 1. Learning and research of the method of performing differential cryptanalysis attacks on symmetric block ciphers.

Topic 2. Study of the method of performing linear cryptanalysis attacks on block symmetric ciphers. Topic 3. Finding key bits based on the use of known input pairs and output XORs of S-blocks.

Topic 4. Analysis of the requirements for the selection of S-blocks used by the developers of the DES standard.

Topic 5. Study of algorithms based on the entropy method.

Topic 6. Study of algorithms based on the NIST 822-STS package.

Self-study

A student's independent work is one of the forms of organization of learning, the main form of mastering educational material in free time from classroom training. During independent work, students study lecture material, do individual homework, prepare for tests, tests and exams. Students are also recommended additional materials (videos, articles) for self-study and analysis.

Non-formal education

Within the framework of non-formal education, according to the relevant Regulation (<u>http://surl.li/pxssv</u>), the educational component or its individual topics may be taken into account in the case of independent completion of professional courses/trainings, civic education, online education, vocational training, etc.

Subjects are not considered for this component in case of successful completion of the courses.

Course materials and recommended reading

Basic literature:

1. Fundamentals of cryptography: a study guide /. S. E. Ostapov, L. O. Val. - Chernivtsi: Knigi-XXI, 2008. - 188 p.

https://dspace.uzhnu.edu.ua/jspui/bitstream/lib/36505/1/%D0%9A%D1%80%D0%B8%D0%BF%D1 %82%D0%BE%D0%B0%D0%BD%D0%B0%D0%BB%D1%96%D0%B7.%20%D0%9A%D1%80%D0% B8%D0%BF%D1%82%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D1%96%D1%87%D0%BD%D1 %96%20%D0%BF%D1%80%D0%BE%D1%82%D0% BE%D0%BA%D0%BE%D0%BB%D0%B8.pdf.

2. Yevseyev S.P. CYBER SECURITY: LABORATORY PRACTICUM ON THE FUNDAMENTALS OF CRYPTOGRAPHIC PROTECTION / S.P. Yevseev, O.V. Milov, O.G. Korol - Lviv: "New World-2000", 2020. -241 p.

http://library.hneu.edu.ua/storage/new-arrivals-books/December2020/Yevseiev.pdf.

3. O. V. Onatskyi, L. G. Yona Cryptographic systems: a textbook on the disciplines "Cryptography and cryptanalysis" for the educational and professional training of bachelors in the field of knowledge 12 "Information technologies" in the specialty 125 "Cyber security" / O. V. Onatskyi, L. G. Yona. – Odesa: International Humanitarian University, 2023. – 156 p.

https://dspace.onua.edu.ua/server/api/core/bitstreams/7d8fb278-794c-4b0d-9254-64acb7892ed1/content

4. Synergy of building cybersecurity systems: monograph / S. Yevseyev, V. Ponomarenko, O. Laptiev, O. Milov and others. - Kharkiv: PC TECHNOLOGY CENTER, 2021. - 188 p.

http://monograph.com.ua/pctc/catalog/view/64/52/231-1.

5. Yevseev S.P. Cyber security: basics of coding and cryptography/ S.P. Yevseev, O.V. Milov, S.E. Ostapov, O.V. Severinov. - Kharkiv: Ed. "New World-2000", 2023. - 657 p.

https://acrobat.adobe.com/id/urn%3Aaaid%3Asc%3AEU%3A3c427761-01ab-4365-88f6-

<u>37f76ca508c5/?x api client id=chrome extension viewer&bookmarkAcrobat=true&x api client location</u> <u>=bookmark&filetype=application%2Fpdf&viewer%21megaVerb=group-discover.</u>

Additional literature:

1. A. Rukhin, and J. Soto. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. NIST Special Publication 800-22, 09.2000, 164 p. <u>https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf</u>

Assessment and grading

Criteria for assessment of student performance, and the final score structure

Points are awarded according to the following ratio:

- laboratory work: 40% of the semester grade;
- independent work: 10% of the semester grade;
- control work: 10% of the semester grade;
- credit test: 40% of the semester grade.

Grading scale

0		
Total	National	ECTS
points		
90-100	Excellent	А
82-89	Good	В
75-81	Good	С
64-74	Satisfactory	D
60-63	Satisfactory	Е
35-59	Unsatisfactory	FX
	(requires additional	
	learning)	
1-34	Unsatisfactory (requires	F
	repetition of the course)	

Norms of academic integrity and course policy

The student must adhere to the Code of Ethics of Academic Relations and Integrity of NTU "KhPI": to demonstrate discipline, good manners, kindness, honesty, and responsibility. Conflict situations should be openly discussed in academic groups with a lecturer, and if it is impossible to resolve the conflict, they should be brought to the attention of the Institute's management.

Regulatory and legal documents related to the implementation of the principles of academic integrity at NTU "KhPI" are available on the website: <u>http://blogs.kpi.kharkov.ua/v2/nv/akademichna-dobrochesnist/</u>

Approval

Approved by

28.08.2024

28.08.2024

 \bigcirc

 $\bigcirc \bigcirc$

Head of the department Serhii YEVSEIEV

Guarantor of the educational program Serhii YEVSEIEV

